Dynamic Notch Signaling Specifies Each Cell Fate in Drosophila Spermathecal Lineage
نویسندگان
چکیده
Spermathecae are glandular organs in the insect female reproductive tract that play essential roles in insect reproduction; however, the molecular mechanism involved in their development is largely unknown. Drosophila spermathecae consist of class-III secretory units, in which each secretory cell (SC) discharges its products to the central lumen through an end-apparatus and a canal. Secretory unit formation in Drosophila spermathecae utilizes a fixed cell lineage, in which each secretory unit precursor (SUP) divides to produce one pIIb cell and one pIIa cell. The former differentiates into an apical cell (AC), whereas the latter divides again to produce an SC and a basal cell (BC). It is unclear how each cell acquires its identity and contributes to secretory unit formation. Here, we demonstrate that Notch signaling is required and sufficient for the specification of lumen epithelial precursors (LEPs; vs. SUPs), pIIb (vs. pIIa), and SCs (vs. BCs) sequentially. To our surprise, Notch activation in LEPs and SCs apparently utilizes different ligand mechanisms. In addition, Notch signaling both suppresses and activates transcription factors Hindsight (Hnt) and Cut during spermathecal lineage specification, supporting the notion that Notch signaling can have opposite biological outcomes in different cellular environments. Furthermore, LEP-derived epithelial cells (ECs) and ACs show distinct cellular morphology and are essential for securing secretory units to the epithelial lumen. Our work demonstrates, for the first time, the dynamic role of Notch signaling in binary cell fate determination in Drosophila spermathecae and the role of ECs and ACs in secretory unit formation.
منابع مشابه
Lineage-specific effects of Notch/Numb signaling in post-embryonic development of the Drosophila brain.
Numb can antagonize Notch signaling to diversify the fates of sister cells. We report here that paired sister cells acquire different fates in all three Drosophila neuronal lineages that make diverse types of antennal lobe projection neurons (PNs). Only one in each pair of postmitotic neurons survives into the adult stage in both anterodorsal (ad) and ventral (v) PN lineages. Notably, Notch sig...
متن کاملDifferential effects of Drosophila mastermind on asymmetric cell fate specification and neuroblast formation.
During neurogenesis in the ventral nerve cord of the Drosophila embryo, Notch signaling participates in the pathway that mediates asymmetric fate specification to daughters of secondary neuronal precursor cells. In the NB4-2 --> GMC-1 --> RP2/sib lineage, a well-studied neuronal lineage in the ventral nerve cord, Notch signaling specifies sib fate to one of the daughter cells of GMC-1. Notch me...
متن کاملIntra-lineage Fate Decisions Involve Activation of Notch Receptors Basal to the Midbody in Drosophila Sensory Organ Precursor Cells.
Notch receptors regulate cell fate decisions during embryogenesis and throughout adult life. In many cell lineages, binary fate decisions are mediated by directional Notch signaling between the two sister cells produced by cell division. How Notch signaling is restricted to sister cells after division to regulate intra-lineage decision is poorly understood. More generally, where ligand-dependen...
متن کاملNotch Signaling in Pancreatic Development
The Notch signaling pathway plays a significant role in embryonic cell fate determination and adult tissue homeostasis. Various studies have demonstrated the deep involvement of Notch signaling in the development of the pancreas and the lateral inhibition of Notch signaling in pancreatic progenitor differentiation and maintenance. The targeted inactivation of the Notch pathway components promot...
متن کاملThe regulation of apoptosis by Numb/Notch signaling in the serotonin lineage of Drosophila.
Apoptosis is prevalent during development of the central nervous system (CNS), yet very little is known about the signals that specify an apoptotic cell fate. In this paper, we examine the role of Numb/Notch signaling in the development of the serotonin lineage of Drosophila and show that it is necessary for regulating apoptosis. Our results indicate that when Numb inhibits Notch signaling, cel...
متن کامل